Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The HH 111 protostellar disk has recently been found to host a pair of spiral arms. Here we report the dust polarization results in the disk as well as the inner envelope around it, obtained with the Atacama Large Millimeter/submillimeter Array in continuum atλ∼ 870μm and ∼0.″05 resolution. In the inner envelope, polarization is detected with a polarization degree of ∼6% and an orientation almost everywhere parallel to the minor axis of the disk and thus likely to be due to the dust grains magnetically aligned mainly by toroidal fields. In the disk, the polarization orientation is roughly azimuthal on the far side and becomes parallel to the minor axis on the near side, with a polarization gap in between on the far side near the central protostar. The disk polarization degree is ∼2%. The polarized intensity is higher on the near side than the far side, showing a near–far side asymmetry. More importantly, the polarized intensity and thus polarization degree are lower in the spiral arms but higher in between the arms, showing an anticorrelation of the polarized intensity with the spiral arms. Our modeling results indicate that this anticorrelation is useful for constraining the polarization mechanism and is consistent with the dust self-scattering by the grains that have grown to a size of ∼150μm. The interarms are sandwiched and illuminated by two brighter spiral arms and thus have higher polarized intensity. Our dust self-scattering model can also reproduce the observed polarization orientation parallel to the minor axis on the near side and the observed azimuthal polarization orientation at the two disk edges in the major axis. Further modeling work is needed to study how to reproduce the observed near–far side asymmetry in the polarized intensity and the observed azimuthal polarization orientation on the far side.more » « less
- 
            Abstract Jets can facilitate the mass accretion onto the protostars in star formation. They are believed to be launched from accretion disks around the protostars by magnetocentrifugal force, as supported by the detections of rotation and magnetic fields in some of them. Here we report a radial flow of the textbook-case protostellar jet HH 212 at the base to further support this jet-launching scenario. This radial flow validates a central prediction of the magnetocentrifugal theory of jet formation and collimation, namely, the jet is the densest part of a wide-angle wind that flows radially outward at distances far from the (small, sub-au) launching region. Additional evidence for the radially flowing wide-angle component comes from its ability to reproduce the structure and kinematics of the shells detected around the HH 212 jet. This component, which can transport material from the inner to outer disk, could account for the chondrules and Ca–Al-rich inclusions detected in the solar system at large distances.more » « less
- 
            Abstract Understanding how material accretes onto the rotationally supported disk from the surrounding envelope of gas and dust in the youngest protostellar systems is important for describing how disks are formed. Magnetohydrodynamic simulations of magnetized, turbulent disk formation usually show spiral-like streams of material (accretion flows) connecting the envelope to the disk. However, accretion flows in these early stages of protostellar formation still remain poorly characterized, due to their low intensity, and possibly some extended structures are disregarded as being part of the outflow cavity. We use ALMA archival data of a young Class 0 protostar, Lupus 3-MMS, to uncover four extended accretion flow–like structures in C 18 O that follow the edges of the outflows. We make various types of position–velocity cuts to compare with the outflows and find the extended structures are not consistent with the outflow emission, but rather more consistent with a simple infall model. We then use a dendrogram algorithm to isolate five substructures in position–position–velocity space. Four out of the five substructures fit well (>95%) with our simple infall model, with specific angular momenta between 2.7–6.9 × 10 −4 km s −1 pc and mass-infall rates of 0.5–1.1 × 10 −6 M ⊙ yr −1 . Better characterization of the physical structure in the supposed “outflow cavities” is important to disentangle the true outflow cavities and accretion flows.more » « less
- 
            null (Ed.)ABSTRACT (Sub)millimetre dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in discs around young stellar objects. We propose a method to constrain the opacity κν in edge-on discs from a characteristic optical depth τ0,ν, the density ρ0, and radius R0 at the disc outer edge through κν = τ0,ν/(ρ0R0), where τ0,ν is inferred from the shape of the observed flux along the major axis, ρ0 from gravitational stability considerations, and R0 from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disc, which has high-resolution data in Atacama Large Millimetre/submillimetre Array (ALMA) bands 9, 7, 6, and 3 and Very Large Array Ka band (λ = 0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modelling is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of κν ≈ 1.9 × 10−2, 1.3 × 10−2, and 4.9 × 10−3 cm2 g−1 of gas and dust for ALMA bands 7, 6, and 3, respectively, with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription κλ = 2.3 × 10−2(1.3mm/λ) cm2 g−1 . We inferred a temperature of ∼45 K at the disc outer edge that increases radially inwards. It is well above the sublimation temperatures of ices such as CO and N2, which supports the notion that the disc chemistry cannot be completely inherited from the protostellar envelope.more » « less
- 
            Abstract One of the most poorly understood aspects of low-mass star formation is how multiple-star systems are formed. Here we present the results of Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations toward a forming quadruple protostellar system, G206.93-16.61E2, in the Orion B molecular cloud. ALMA 1.3 mm continuum emission reveals four compact objects, of which two are Class I young stellar objects and the other two are likely in prestellar phase. The 1.3 mm continuum emission also shows three asymmetric ribbon-like structures that are connected to the four objects, with lengths ranging from ∼500 to ∼2200 au. By comparing our data with magnetohydrodynamic simulations, we suggest that these ribbons trace accretion flows and also function as gas bridges connecting the member protostars. Additionally, ALMA CO J = 2−1 line emission reveals a complicated molecular outflow associated with G206.93-16.61E2, with arc-like structures suggestive of an outflow cavity viewed pole-on.more » « less
- 
            ABSTRACT Polarized continuum emission from aligned grains in discs around young stellar objects can be used to probe the magnetic field, radiation anisotropy, or drift between dust and gas, depending on whether the non-spherical grains are aligned magnetically, radiatively, or mechanically. We show that it can also be used to probe another key disc property – the temperature gradient – along sightlines that are optically thick, independent of the grain alignment mechanism. We first illustrate the technique analytically using a simple 1D slab model, which yields an approximate formula that relates the polarization fraction to the temperature gradient with respect to the optical depth τ at the τ = 1 surface. The formula is then validated using models of stellar irradiated discs with and without accretion heating. The promises and challenges of the technique are illustrated with a number of Class 0 and I discs with ALMA dust polarization data, including NGC 1333 IRAS4A1, IRAS 16293B, BHB 07-11, L1527, HH 212, and HH 111. We find, in particular, that the sightlines passing through the near-side of a highly inclined disc trace different temperature gradient directions than those through the far-side, which can lead to a polarization orientation on the near-side that is orthogonal to that on the far-side, and that the HH 111 disc may be such a case. Our technique for probing the disc temperature gradient through dust polarization can complement other methods, particularly those using molecular lines.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
